Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPLv3 license (also available under proprietary license upon request). It contains an extensive collection of reusable algorithms which implement audio input/output functionality, standard digital signal processing blocks, statistical characterization of data, and a large set of spectral, temporal, tonal and high-level music descriptors. In addition, Essentia can be complemented with Gaia, a C++ library with python bindings which implement similarity measures and classifications on the results of audio analysis, and generate classification models that Essentia can use to compute high-level description of music (same license terms apply). The provided functionality, specifically the music descriptors included in-the-box and signal processing algorithms, is easily expandable and allows for both research experiments and development of large-scale industrial applications.
Essentia is not a framework, but rather a collection of algorithms (plus some infrastructure for multithreading and low memory usage) wrapped in a library. It doesn’t provide common high-level logic for descriptor computation (so you aren’t locked into a certain way of doing things). It rather focuses on the robustness, performance and optimality of the provided algorithms, as well as ease of use. The flow of the analysis is decided and implemented by the user, while Essentia is taking care of the implementation details of the algorithms being used.
Link to documentation: http://essentia.upf.edu/documentation/
Essentia homepage: http://essentia.upf.edu/